首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9331篇
  免费   1520篇
  国内免费   2217篇
  2023年   326篇
  2022年   235篇
  2021年   250篇
  2020年   504篇
  2019年   487篇
  2018年   581篇
  2017年   542篇
  2016年   544篇
  2015年   536篇
  2014年   580篇
  2013年   701篇
  2012年   454篇
  2011年   594篇
  2010年   383篇
  2009年   520篇
  2008年   511篇
  2007年   510篇
  2006年   484篇
  2005年   413篇
  2004年   382篇
  2003年   359篇
  2002年   355篇
  2001年   288篇
  2000年   248篇
  1999年   216篇
  1998年   213篇
  1997年   173篇
  1996年   165篇
  1995年   189篇
  1994年   165篇
  1993年   119篇
  1992年   135篇
  1991年   89篇
  1990年   97篇
  1989年   98篇
  1988年   87篇
  1987年   55篇
  1986年   59篇
  1985年   85篇
  1984年   53篇
  1983年   27篇
  1982年   71篇
  1981年   39篇
  1980年   33篇
  1979年   32篇
  1978年   24篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Carbon isotope ratios (13C) for bubble CH4 in a submerged paddy soil were studied in Yokohama, Japan, throughout a growing period, and its variation was found. Bubble CH4 collected from other 33 paddy fields in Japan was also measured for its 13C and the results agreed with Yokohama. Furthermore, the variation occurred irrespective of the amount and the type of supplied organic substances to the fields (whole rice straw, rice stubble, or compost). The 13C value (average value of -55.9 ± 4.24) from these paddy fields was higher than those of the CH4 emitted from African and North American paddies. The higher value was little affected by their difference in the supplied organic substances. CH4 oxidation likely occurs for bubble CH4 in the shallow paddy fields. A rough estimate of the total CH4 production, using isotope mass balance, showed that 17 to 22% of organic carbon supplied to Japanese paddies transforms to CH4.  相似文献   
82.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   
83.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   
84.
Abstract Denitrification in intact sediment cores was measured by the acetylene inhibition technique and compared with the nitrate flux between water and sediment. Less than half of the nitrate-N consumed by the sediment could be recovered as nitrous oxide-N. The low recovery rate of nitrous oxide from intact sediment cores indicated losses of nitrous oxide by diffusion down to nitrate-free sediment layers, where reduction of nitrous oxide may take place. In sediment slurries 100% of nitrate-N could be recovered as nitrous oxide-N as long as the nitrate concentration in the liquid phase was above 10 μM. Nitrous oxide added to nitrate-free sediment slurries was reduced regardless of whether acetylene was present or not. Therefore denitrification may be significantly underestimated by this method.  相似文献   
85.
Variation in the carbon content of two Asplanchna species   总被引:3,自引:3,他引:0  
The rotifers of the genus Asplanchna were sampled four times during the summer from eight lakes of different types. The mean individual carbon content in the population varied between 0.15–0.66 µg C ind.-1 (n = 21) for A. priodonta and 1.0–1.6 µg C ind.-1 (n = 3) for A. herricki. The carbon content and the size of A. priodonta varied considerably between the populations of both different lakes and dates.The carbon level of both Asplanchna species (sample mean 0.2–1% of wet weight) was considerably lower than is generally found for rotifers. Much of the variation of carbon level could be explained by an inverse relationship with wet weight. The high variation in the carbon content of individuals suggests that Asplanch population may adapt their mean body size to fit prevailing environmental conditions.  相似文献   
86.
A method is described for the measurement of the carbon and nitrogen content of particulate material in natural waters. Particulate material is separated by filtration through GF/C filters. The dried filter is encapsulated in silver foil using a purpose made press. Analysis is carried out using high temperature combustion with thermal conductivity detection of emission gasses. Analytical performance characteristics obtained with both standards and natural materials are given.  相似文献   
87.
Respiration was measured in dauer stages of the insect-parasitic nematode Steinernema feltiae (= Neoaplectana carpocapsae) at 7, 17, and 27 C. Respiration, Q₁₀, and nematode viability were temperature dependent. Mean O₂ consumption for 5 × 10⁵ nematodes the first 24 hours was 0.27 ml at 7 C, 0.83 ml at 17 C, and 2.68 ml at 27 C. The Q₁₀ was 3.10 for 7-17 C and 3.24 for 17-27 C. Some nematodes died during 2, 14, and 21 days at 27, 17, and 7 C, respectively. The respiratory quotient was below 1 at all temperatures tested. A standard asymptotic model is expressed as oxygen consumed = 2.77 * {1 - exponent[-time * exponent(-B + C * temperature)]}; where 2.77 is the maximum response at 27 C. This model estimates nematode O₂ consumption and viability at storage temperatures between 7 and 27 C. The nematodes died when the O₂ concentration reached 0.5 ml/5 × 10⁵ nematodes. This model may be used to predict O₂ requirements of S. feltiae infective juveniles when stored as a waterless concentrate.  相似文献   
88.
89.
The photosynthetic and growth characteristics of Ceratophyllum demersum L. were investigated under laboratory conditions which simulated those encountered in the plants' normal environment. The carbon fixation rate of C. demersum measured with 14C at light and carbon saturation at pH 8.0 was 4.48 mg C (g ash-free dry weight)−1 h−1. It was lower at pH 6.5 than at pH 8.0. The light use efficiencies in quiescent plants and actively growing plants were 6.3 and 8.7 × 10−9 kg CO2 J−1, respectively, with corresponding maximum photosynthetic rates of 2.67 and 4.36 mg C (g ash-free dry weight)−1 h−1. Photorespiration in actively growing plants consumed 24% of the carbon fixed. Incubation with DCMU demonstrated that about one-third was refixed. The optimum temperature for carbon fixation was 25°C. The C3-photosynthetic pathway was the main operational route as indicated by the early photosynthetic products (largely C3-acids) and the absence of Krantz anatomy and the chlorophyll a:b ratio (2.7). The maximum relative growth rates ranged from 0.025 to 0.041 g ash-free dry weight (g ash-free dry weight)−1 day−1 in the field (Lake Vechten, 1 to 3 m depth classes).  相似文献   
90.
The long-term response of citrus rootstock seedlings to CO2 enrichment was examined in Carrizo estrange ( Poncirua trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] and Swingle citrumelo ( P. trifoliate x C. parodist Macf.]. Plaotlets 14 weeks old were transferred to outdoor controlled-environment chambers and maintained for 5 months from Feb. 14 to July 21. During this period, new growth (cm) of citrange and citrumelo shoots at 660 μl1−1 was 94 and 69% greater, respectively, than at 330 μ1 1−1. Total dry weight of both rootstock shoots had increased by over 100%. Growth of few species is affected this markedly by elevated CO2 levels.
More carbon was partitioned to above-ground organs in CO2-enriched citrus seedlings. Stem dry matter per unit length was also 32 and 44% greater in citrange and citrumelo, respectively. Total leaf area was increased by 124% in citrange and 85% in citrumelo due to greater leaf number and size. Variations in overall relative growth rate appeared to be related to the rapid, sequential, flush-type growth in citrus, in which an entire shoot segment with its associated leaves remains an active sink until fully expanded. RuBP carboxylase (EC 4.1.1.39) activity in leaves of recently-expanded flushes was higher in citrumelo plants grown at 660 vs 330 μ1 1−1 CO2 and changed diurnally for citrange (but not citrumelo) leaves at both CO2 levels. The results are consistent with the hypothesis that positive long-term effects of CO2 enrichment may be greater in species or during growth periods where sink capacity for carbon utilization is high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号